
Menu button

The Menu button provides access to a menu that offers the same functions as the buttons left to the
Menu button.

This way may be advisable for people that are used to menu driven programs.

Show Color
Show State
Color Mapping
Hex Display
Zoom
Repaint

Round counter

There are two counters that indicate the current generation of your cellular automaton
model:
- a counter in a grey label to the left of the button panel of the state window
- a counter right to the program name 'CAT' label separated by a colon.

You can use both round counters particularly if color display of the cell matrix is switched off.

Palette customizing button

The above button provides four functions for manipulating the color palette and some others for
loading, saving, displaying and printing a palette.

Overview on menu items and functions

item effect

Initialize Palette
B/W blend Generates a regular scale of the colors black, white

and grey with low differences between neighboring
colors, but with remarkable differences between the
most opposite colors.

Color blend Generates a regular scale of colors with low diffences
between neighbored colors, but with remarkable
differences between the most opposed colors.

By parameters... Initializes the STATE window by a blend of colors
which can be controlled by certain parameters.

<user defined> Allows to load a particular palette by means of this
menu under a prefixed name.

Palette
Load Loads an existing palette as CAP file.
Save Saves current palette as <name of model>.CAP file.
Save As Saves current palette with free selectable name plus

file extension .CAP.
Show Shows the current color palette on the data display. Close

the according window by doubleclicking the 'close'
button in the top left corner.

Print Prints the current color palette on your standard
printer.

Corresponding CARP procedures:
RGBPalette, RGBBrush DelBrushes

Palette | B/W blend

Generates a regular pattern consisting of the colors black, white and grey with low diffences between
neighbored colors, but with remarkable differences between the cells of the top left and the bottom
right corner.

Click the Palette customizing button.
=> A menu pops up.
Select the item B/W blend in menu Palette.
=> The cell matrix will be initialized by a blend of black, white and gray cells with slight differences
between adjacent cells, but with greater differences between distant cells.

On the actual Zet setting depends how rough or fine the grades between the different colors appears.

Palette | Color blend

Generates a regular color pattern with little differences between neighboring colors, but with
remarkable differences between cells in the top left and the bottom right corner.

Click the Palette customizing button.
=> A menu pops up.
Select the item Color blend in menu Palette.
=> The cell matrix will be initialized by a color blend with slight differences between adjacent cells,
but with great differences in colors between distant cells.

It depends on the actual Zet and Colors settings how rough or fine the grades between the different
colors appear.

Palette | <user file>

The menu item <user file> serves under certain preconditions to load previously saved color palettes
in a more rapid way.

Click the Palette customizing button.
=> A menu pops up.
Select the item <file name> in menu Palette.
=> The previous color palette will be overwritten by the selected one as can be noticed by a different
appearance of the cell matrix.

To appear as a menu item, the corresponding file <user file.CAP> must be contained in the CAT.INI file
and be a valid .CAP file.

Example for an corresponding entry in the file CAT.INI:
[Files]
LastProject=
UserPal1=USERFILE.CAP
UserPal2=
UserPal3=
UserPal4=

[Sounds]
ReadOnly=ding.wav

Note:
Up to four different palettes may be loaded by means of these menu items provided that
corresponding names are contained in the CAT.INI file. To save an according .CAP file use Save or
Save As.... To write the names of the .CAP files in the CAR.INI file, you can use any ASCII editor.

Palette | Load

Loads an existing color palette saved previously as a .CAP file.

Click the Palette customizing button.
=> A menu pops up.
Select the item Load in the menu Palette.
=> You will get a file selection box to choose a .CAP file from.
Select a palette (.CAP file) and click OK.
=> The previous color palette will be overwritten by the selected one as can be noticed by a different
appearance of the cell matrix.

Note:
If you have changed your old color palette, you will not be prompted for saving these changes. The
new color palette will overwrite the previous one without any further dialog. So: handle with care!

Palette | Save

Saves the actual state of the color palette as . CAP file.

Click the Palette customizing button.
=> A menu pops up.
Select the item Save in the menu Palette.
=> The current color palette will be saved under the prefixed name.

If there is no name assigned to the current color palette, you will be prompted for a name (cp. Save
As).

Palette | Save As

Saves the current color palette under a free selectable name plus file extension .CAP.

Click the Palette customizing button.
=> A menu pops up.
Select the item Save as in the menu Palette.
=> You will get a file dialog box.
Type in a meaningful name and click OK.
=> The current color palette will be saved under the chosen name.

Palette | Show

Shows the current color palette immediately on the screen.

Click the Palette customizing button.
=> A menu pops up.
Select the item Show in the menu Palette.
=> You will get a window containing the current color palette similar to the one below.

The first figure of a column is the color mapping value (mostly connected with a state value), the
second is the value for the color red, the third for the color green and the fourth for the color blue.
Figures may also appear as hexadecimal figures. This depends on your current setting of the
hexadecimal button.

Example of a color palette (compressed to two columns to save space):
000 000 000 000 015 150 000 000
001 010 000 000 016 160 000 000
002 020 000 000 017 170 000 000
003 030 000 000 018 180 000 000
004 040 000 000 019 190 000 000
005 050 000 000 020 200 000 000
006 060 000 000 021 210 000 000
007 070 000 000 022 220 000 000
008 080 000 000 023 230 000 000
009 090 000 000 024 240 000 000
010 100 000 000 025 250 000 000
011 110 000 000 026 255 010 000
012 120 000 000 027 255 020 000
013 130 000 000 028 255 030 000
014 140 000 000 029 255 040 000

Close the respective window by doubleclicking the 'close' button in the top left corner.

Palette | Print

Prints the current color palette on your standard printer.

Click the Palette customizing button.
=> A menu pops up.
Select the item Print in the menu Palette.
=> A print dialog box appears.
Confirm printing by clicking OK.
=> You will get a printout containing the current color palette similar to the one below.

The first figure of a column is the color mapping value (mostly connected with a state value), the
second is the value for the color red, the third for the color green and the fourth for the color blue.
Figures may also appear as hexadecimal figures. This depends on your current setting of the
hexadecimal button.

Example of a printed color palette (compressed to two columns to save space):
000 000 000 000 015 150 000 000
001 010 000 000 016 160 000 000
002 020 000 000 017 170 000 000
003 030 000 000 018 180 000 000
004 040 000 000 019 190 000 000
005 050 000 000 020 200 000 000
006 060 000 000 021 210 000 000
007 070 000 000 022 220 000 000
008 080 000 000 023 230 000 000
009 090 000 000 024 240 000 000
010 100 000 000 025 250 000 000
011 110 000 000 026 255 010 000
012 120 000 000 027 255 020 000
013 130 000 000 028 255 030 000
014 140 000 000 029 255 040 000

State | Single Value 0

Initializes the cell matrix with the uniform value 0 and its assigned color.

Click the State control button.
=> A menu pops up.
Select the item Single Value 0 in menu Initialize States.
=> The cell matrix will change to a single color representing a equal value
for each cell.

Note:
This operation is advisable if you want to get a uniform cell matrix, that now can be changed on few
positions by means of some left (ascending count) or right (descending count) mouse clicks on the
corresponding cell position.

State | Single Value 1

Initializes the cell matrix with the uniform value 1 and its assigned color.

Click the State control button.
=> A menu pops up.
Select the item Single Value 1 in menu Initialize States.
=> The cell matrix will change to a single color representing a equal value
for each cell.

Note:
This operation is advisable if you want to get a uniform cell matrix, that now can be changed on few
positions by aid of left (asending count) or right (descending count) mouse clicks on the corresponding
cell position.

State | Single Value N

Initializes the cell matrix with the uniform value n to be entered by a dialog box.

Click the State control button.
=> A menu pops up.
Select the item Single Value n... in menu Initialize States.
A dialog box comes up.
Enter a figure inside the range of Zet and click OK:
=> The cell matrix will change to a single color representing the chosen value.

Note:
This operation is advisable if you want to get a uniform cell matrix, that now can be changed on few
positions by aid of left (asending count) or right (descending count) mouse clicks on the corresponding
cell position.
Entering values above Zet will not change the cell matrix.

State | Random Values

Initializes the cell matrix with the random values that are defined by .

Click the State control button.
=> A menu pops up.
Select the item Random Values n in menu Initialize States.
=> The cell matrix will adopt a random pattern, if every state is assigned to a different color.
Otherwise, you will see the random dissemination of integer values at least by use of the Numeric
state button.

Note:
This operation is advisable if you want to get random patterns on your cell matrix for e.g. a growth
model.

State | Upstairs

Initializes the cell matrix with the pattern resembling a stair. The 'steps' of the stair vary with the
prefixed Zet and Color value.

Click the State control button.
=> A menu pops up.
Select the item Upstairs in menu Initialize States.
=> The cell matrix will adopt a stair like pattern, beginning with the lowest value in the top left corner
and continuing to the highest value on the right bottom corner.

The stair form results from the fact that the first step is smaller or greater than XYBound followed by
XYBOUND * XYBOUD DIV Zet cells of the next value. If no stair is visible, you will despite see the
stairlike dissemination of integer values by use of the Numeric state button.

State | Load

Loads a state of a CAT model previously saved as .CAS file.

Click the State control button.
=> A menu pops up.
Select the item Load in menu State.
=> The cell matrix will adopt the state defined by the corresponding .CAS file.

Note:
If the loaded .CAS file is greater than the current cell matrix only those cells are loaded that fit into the
current cell matrix. This process starts from the center and cuts eventually cell areas at the edges.
If the loaded .CAS file is smaller than the current cell matrix only those cells of the current cell matrix
are affected that have counterparts in the loaded .CAS file. This process starts from the center and lets
cell areas at the edges eventually unchanged.
If the to be loaded .CAS file contains more different states (Zet) than the current CAT model, the new
state value will be computed as high_state_value MOD Zet.

State | Save

Saves the current state of the cell matrix under a prefixed name.

Click the State control button.
=> A menu pops up.
Select the item Save in menu State.
=> The cell matrix will be saved as <mod_name>.CAS file.

Note:
If no name is present, you will be prompted for a name by a Save as dialog box.
For taking a snapshot of a certain critical state of the cell matrix, the Save as function is recommended
for less danger of overwriting important data.

State | SaveAs

Saves the current state of the cell matrix under a free selectable name.

Click the State control button.
=> A menu pops up.
Select the item Save As in menu State.
=> A Save As dialog box comes up and prompts for a file name.
Enter a meaninful file name.
=> The cell matrix will be saved as <filename>.CAS file.

Note:
This function is advisable if you want to keep snapshots of critical states of your cellular automaton
model..

State | Show

Displays the current state of your cell matrix in numeric format on your data display. You will get an
output simular to the one below.

Click the State control button.
 => A menu pops up.
Select the item Show in menu State.
 => You will receive a particular Plane window where each cell of your cell matrix is represented by its
numeric value. Compare the example below.

If there are too many defined cells you can scroll the contents of this window to regard all cells.

Explanation of the sample Plane window:
The first two figures of the first line contain the number of XBound (size on the x axis) and YBound
(size on the y axis) . The third figure in the second line contains the number of defined states (cp. Zet).
All other figures represent the state of each cell according to their x and y coordinates. (The fourth
value 010 in the fifth line represents the cell c (4|3)).

Figures may also appear as hexadecimal figures. This depends on your current setting of the
hexadecimal button.

Example of a Plane window:
00000032 00000032
00000020
003 012 019 008 006 010 007 008 011 002 009 010 007 019 011 005 008 013 000 000 008 016 006
004 013 012 001 008 004 013 002 016
014 002 016 010 003 001 019 004 017 009 014 005 001 018 000 003 004 017 000 006 005 017 006
015 008 019 013 010 012 004 007 001
007 006 003 000 014 015 006 005 008 018 001 008 000 015 006 005 019 017 006 012 019 000 002
004 013 014 000 008 012 008 007 015
014 015 011 018 013 000 008 008 012 018 011 001 002 001 018 001 013 013 005 009 013 009 005
004 002 014 011 009 006 011 014 002
(abridged)

Close the according window by doubleclicking the close button in the top left corner.

State | Print

Prints the current state of your cell matrix on your standard printer.

Click the State control button.
=> A menu pops up.
Select the item Print in menu State.
 => You will get a printout simular to the one below of the current state of your cell matrix (.CAS file)
on your printer.

The first two rows contain the number of XBound (size on the x axis) and YBound (size on the y axis) .
The third figure in the second row contains the number of defined states (cp. Zet). All other figures
represent the state of each cell according to its x and y coordinates. (The value 010 in the fifth line on
the fourth place represents the cell c (4|3)).

Figures may also appear as hexadecimal figures. This depends on your current setting of the
hexadecimal button.

Example of a printed state window with XYBound 14:
0000001400000014
00000020
003 012 019 008 006 010 007 008 011 002 009 010 007 019
011 005 008 013 000 000 008 016 006 004 013 012 001 008
014 002 016 010 003 001 019 004 017 009 014 005 001 0180
000 006 005 017 006 015 008 019 013 010 012 004 007 001
007 006 003 000 014 015 006 005 008 018 001 008 000 015
006 005 019 017 006 012 019 000 002 004 013 014 000 008
014 015 011 018 013 000 008 008 012 018 011 001 002 001
018 001 013 013 005 009 013 009 005 004 002 014 011 009
017 012 001 011 013 016 014 016 005 000 011 015 015 011
009 003 006 014 010 011 005 017 006 016 010 002 006 015
012 017 001 000 010 009 017 009 011 012 011 014 019 019
016 006 002 006 016 006 003 014 011 016 019 011 016 011
010 019 012 017 018 002 004 012 013 017 012 014 018 019
007 000 008 018 019 018 018 014 012 019 010 002 000 005

Palette | By parameters

The item By parameters in the Initialize Palette menu initializes the cell matrix of the STATE window
with a color blend which can be controlled by certain parameters by the user.

Click the State control button.
=> A menu pops up.
Click By parameters... in the Initialize Palette menu.
 => You are offered this dialog box:

You can change the color blend in two steps:

1. Change initial and terminal color for color blend by means of the drop down list box labeled 'Color
blend from: to:':
Click on one of the scroll buttons with upward arrrows.
 => A box pops up to select a color from.

2. Change the scale (distribution) of used colors
To change the color scaling you can alternatively click 'Uniform' or 'Successively'.
 => A sample of the selected font will be shown in the bottom left corner.
Confirm your selection by clicking OK.

State | Centered

The item Centered in the Initialize States menu gives the cell matrix an onion-like shape with one color
in the center surrounded by layers of other colors.

Click the State control button.
=> A menu pops up.
Click Centered in the Initialize States menu
 => You are offered the below dialog box.

Click either the button 'Minimum in the center' or let the default setting 'Maximum in the center'
unchanged. Click in the white area on the right side if you want to change the granularity of colors and
enter a value between 1 and 90. Click OK.

 => You will receive a cell matrix with one color in the center and other colors surrounding the center
layer by layer.

This effect gets more visible with high Colors and Zet values.

Graphic window (STATE)
As the CARP program is the formal part of your cellular automaton model, so is the STATE window the
visual and apprehensible part of it. It has to visualize the whole cell matrix and each cell state at a given
time and in its historical development.

To make this possible the STATE window provides two kinds of representation of the cells' state:
- representation of the state of each cell by colors (graphic representation)
- representation of the state of each cell by decimal or hexadecimal numeric values

(numeric representation).

Beyond, you can customize the appearance of this window in different ways by means of some of these
buttons.

Overview on all functions:

 | | | | | | | | | | | |
 A B C D E F G H I J K L
A Show / hide matrix button

Switch to show or suppress display cell states by colors
B Numeric state button

Switch to display the state of each cell by figures
C Color mapping button

Displays the palette entry that is assigned to a single cell
D Hexadecimal format button

Switch to show numbers hexadecimal or decimal format
E Magnifier button

Switch to show or suppress border display
F Color customizing button

Changes the color that is assigned to a palette entry
G Repaint button

Paints the window again
H State control button

Opens the local menu: State (initialization and other functions)
I Palette customizing button

Opens the local menu: Palette (changing a whole palette)
J Menu button

Offers the same functions as provided by buttons
K Shows the number of executed rounds
L Shows the elapsed time

Note:
Many of these buttons have toggle switch logic. An activated toggle switch is indicated by a little red hook.
Most of the functions executed by the above buttons can also be triggered by corresponding CARP
procedures.

Show/hide matrix button

Normally, the state of each cell of your cellular automaton model is represented by a certain
color depending on your current color settings. Switching off this color display is useful, if
your model is very cpu time consuming and if you don't need to observe your model
continously.

Click the above button to switch off color display.
The color display is switched off, the cell state window shows a grey area. Computation of
each generation of the cellular automaton is continued and speeded up. The current
generation is indicated by the round counters.

To return to the previous state click the above button again.
CAT will show the color reprensation of the matrix again.

Switching off color display assumes that the numeric state representation is disabled.

Corresponding CARP procedure:

Numeric state button

Your cellular automaton model may be represented in the state window in two kinds:
- graphic representation of the state of each cell by colors
- numeric representation of the state of each cell by decimal or
hexadecimal numeric values.

To choose either form click the above button. The plane state window will switch from
graphic to numeric representation and vice versa. The default setting is graphic
representation.

To switch from decimal to hexadecimal number format use the hexadecimal format button.

Corresponding CARP procedure:

Color mapping button

Depending on your settings for defined colors and the optional use of the    RGBPalette
instruction the different states of the cell matrix are reflected by different color mappings.
(Color mappings define the colors to be shown.)

Click the above button to switch on display of color mappings.
The values for the different color mappings will be shown in the cell matrix. To return to the
previous state click the above button again.

This display may also be combined with the numeric state display. Mostly, these values will
be identical, but for certain reasons they may differ.

Note:
If the window is too small or the XYSize for the matrix is to big to show the figures in the
small cells, an according message is shown.
The color mappings may also be printed on your printer.

Related CARP procedure:
RGBBrush , RGBPalette

Hexadecimal format button

The above button provides switching from decimal to hexadecimal number format and vice
versa.

Default setting is decimal format.

Magnifier button

The above button provides switching between two appearances of the cell matrix:
- showing the whole cell matrix with its border areas (cp. XYBound)
- showing the cell matrix without border areas

Default setting is display of the cell matrix with borders.

Clicking the above button enlarges the remaining cells more or less slightly. This button is
effective regardless of color or numeric cell representation.

Corresponding CARP procedure: PlClipActive, PlClipAll

Color customizing button

The above button provides changing the color of a selected cell and all other cells of that
kind.

Select a cell of the kind you want to change on the cell matrix. Click the above button. A
dialog box with three sliders labeled "R"(ed), "G"(reen) and "R"(ed) will come up.

Drag one button of the red, green or blue sliders towards one end. The selected color will change heavily
whereas the summirizing color panel in the right bottom corner will change slowly. This last panel
represents the color the selected cell and all identical cells will adopt.

Click the OK button to confirm the new color selection or leave the dialog box by clicking CANCEL.

The color selection will override settings that are made by means of the RGBPalette instruction.

Corresponding CARP procedure:
RGBBrush , RGBPalette

Repaint button

The above button provides painting the active window again (Repaint). This is useful, if the
active window is displayed uncompletely or with garbled colors.

Corresponding CARP procedure:
RePaint

State control button

Clicking the above button pops up a menu with these items:

item short description

Initialize States
Single Value 0 all cells initialized with value 0
Single Value 1 all cells initialized with value 1
Single Value n all cells initialized with value n to be entered in a

dialog box
Random Values all cells initialized with random values.

Range of values depends on Zet.
Centered initializes the cell matrix with the highest value in

the center descending to the lowest in the corners
or vice versa. Range of values depends on Zet.

Upstairs initializes the cell matrix with a stair-like pattern.
Range of values depends on Zet

State
Load loads a previous saved state of a cell matrix

(.CAS file).
Save saves the current state of the cell matrix as

.CAS file.
Save As saves the current state of the cell matrix as

.CAS file under a new name
Show shows the current state of the cell matrix in a text winodw.
Print prints the current state of the cell matrix

(.CAS file).

CAT Help Index

Concepts
Goals of CAT
Properties of CAT
Color definition and manipulation: an introduction

Menus
File Menu
Edit Menu
Search Menu
Window Menu

Windows
Main window
STATE window
RECIPE window
LIST window
Graphic window
Text window

The CARP programming language
Concepts of CARP
CARP overview

Files
Files of the CAT environment

Troubleshooting
Compiler error messages
Runtime messages
Minor    trouble shooting items
Known bugs

Miscellaneous
Copyright
Hardware and software requirement
Restrictions of Public Domain version
Where to get a printed manual

The Index contains a list of all Help topics available for the Help Example. For information
on how to use Help, press F1 or choose Using Help from the Help menu.

Color map
CAT starts with default values that provide to mark certain states of a cell by predefined
colors immediately. On the other hand you have plenty of options for color manipulations
that a summary may turn things clearer to you.

Color palette
CAT uses a palette of 230 colors that is structured like this:

map id r-value g-value b-value
1 10 0 0
2 20 0 0
.....
230 0 0 250

The default color palette starts with map id 0 for blue and ends with map id 230 for a light
green. Each map id has assigned three values for the colors red, green and blue (socalled
'rgb triple'). Each single setting for red, green or blue may vary from 0 to 255 (or $0 to
$FF), where the defined color is mixed by the three component colors. (To get a
impression of this use the Color customizing button)

The current color palette can be shown by means of the Palette | Show command. (There
are also color values above 230, but these values are used by Windows and should not be
manipulated by you. Otherwise, you may get garbled colors even in other applications.)

Color definition and manipulation: an introduction
Besides using reasonable default values to start modelling immediately, CAT allows
customization of colors and assigning colors to cell states on three levels.

I. Palette customization
The color palette is a map of up to 230 colors that can
- be substituted by an existing color palette (file extension .CAP) by means of the Palette |
Load command,
- be saved as .CAP file by means of the Palette | Save command or
- that can be newly created by use of the RGBPalette instruction.
Besides these facilities the palette can be manipulated by means of the Palette
customizing button.

II. Color customization
A single color, however, can be created by means of the RGBBrush procedure or later be
changed by means of the Color customizing button. Be careful using the DelBrush
procedure unless you redefine a new color palette.

III. Assigning colors to cell states
The easiest thing is, if the values for Zet and Colors on the top of your CARP program are
equal. Every state is then represented by a particular color. If one of the values is greater
than the other, the range of states that are represented by the same color can be
calculated as Zet DIV Colors. A sample: Zet = 240; Colors = 80; results in an interval of 3
different cell states represented by the same color. Which cell states correspond with a
certain color can be easily observed if you activate the Numeric cell state button and the
Color mapping button simultaneously.

 --
 v v
color palette Zet
1 - 230 colors value for number
 | of possible
 color + map number <---------------------> cell states
 |
 rgb tripel

 | | |
 red green blue
 0-255 0-255 0-255

Figure: Relation between color palette, colors and cell states

As you can derive from the figure you assign a certain color to a particular cell state by its
color mapping number. Each single red, green or blue value defines the component
portion of this color to the merged color. Red set to 255, green to 0 and blue to 0 results
for example in a deep red color.

Some samples with that you can get make experiments at your pc:

Sample a: Default color palette
(* program to demonstrate almost all available colors of the
 default color palette *)

RECIPE XYSize = 15;
 Zet = 230;
 Colors = 230;

EVENT E0;
 PARALLEL DO
 Self := GetX + (GetY * XYSize)
 OD;
 ShowPlane;
 END.

Sample b: Usage of the 'RGBBrush' procedure
(* program to demonstrate usage of 'RGBBrush *)
RECIPE XYSize = 15;
 Zet = 2;
 Colors = 2;

CONST Alive = 0;
 Dead = 1;

EVENT SetUp;
 RGBBrush (Dead, 0, 0, 255); (* assigning blue to Dead *)
 RGBBrush (Alive, 255, 0, 0); (* assigning red to Alive *)
 PlFillRandom (Alive, Dead);
 ShowPlane;
 END.

Sample c: Usage of the 'RGBPalette' procedure
(* program creates 10 colors and fills the STATE window
 by a random pattern *)
ECIPE XYSize = 15;
 Zet = 10;
 Colors = 10;

CONST a_state = 0;
 b_state = 1;
 c_state = 2;
 d_state = 3;
 e_state = 4;
 f_state = 5;
 g_state = 6;
 h_state = 7;
 i_state = 8;
 k_state = 9;

EVENT SetUp;
 RGBPalette (Colors, 150, -20, 0, 20, 255, -20);
 PlFillRandom (a_state, k_state);
 ShowPlane;

 END.

Using 'RGBPalette', you may find it difficult to create 10 colors each differing suffiencently
from another. If you find two colors too less differing, use the Color customizing button or
use Shift + right mouse key to activate the Color dialog box for the corresponding cell.

Color palette
The color palette is a table of up to 230 entries. Each of these entries consists of an
identifying number (color map) and three associated numbers representing the portion
of the colors red, green and blue (a socalled RGB tripple) contained in merged
'summarized' color. The scale for each component color ranges from 0 to 255. A red value
of 255 means for example means a deep red.

color mapping number (identifier)
| red value
| | green value
| | | blue value
V V V V
000 000 000 000
001 010 000 000
002 020 000 000
003 030 000 000
004 040 000 000
005 050 000 000
006 060 000 000
007 070 000 000
008 080 000 000
009 090 000 000

Only those entries of the color palette actually defined by the RGBPalette or RGBBrush
procedure overwrite existing entries of the old color palette. Those entries of the 230
accessible entries currently not defined remain unchanged.

You can display your current color palette on the screen or print it by means of the local
menu.An example of such a printed color palette with 10 entries is shown above:

The number of lines in this example is the number of colors you use. If you modify this
text, the palette you are using will be updated after you have closed this text window.

You may delete all of the text and write one or more lines in the above format. After
closing the window only those colors will be updated.

Depending on the hexadecimal button figures are shown either as decimals or as
hexadecimals.

Don't use color entries above 230! They are used by MS Windows and may impact your
operating system or other Windows applications.

File Menu
The menu File collects a couple of items related to file handling and a menu item to quit
the CAT environment.

New
Open
Save
Save As

Set Font
Print Text

Exit

Apart from the equivalent functions of the local menu the File menu functions have a
global range. That means for example File | Save saves every file contribuing to a specific
cellular automaton model, not only a particular file.

File Menu | New
The item New in the File menu provides an empty RECIPE window to write a new CARP
program.

Click New in the File menu.
    => If there, a previous Recipe file (file extension .CAR) disappears from the

window and a new empty RECIPE window is presented for writing a new
CARP program. The corresponding Recipe file has the temporary file name
NewFile.CAR until it will be saved the first time.

If the last .CAR file you worked with is not saved, you are asked whether you want to
discard or save this file.

Compare also the equivalent, but local New function of the local menu.

File Menu | Open
The item Open in the File menu provides loading of an existing .CAT file as global
workspace for a complete cellular automaton tool.

Click Open in the File menu.
    => A file selection box titled Browse comes up to choose a file name from. The

file extension .CAT for a complete automaton tool model is preset, but may
be changed by means of the control panel List Files of Type.

Compare also the simular, but local Overload function of the local menu.

File Menu | Save
The item Save in the File menu provides saving the current state of your whole cellular
automaton model as .CAT file (workspace). However, this global Save not only saves the
contents of the .CAT file, but of all files building up a CAT model
(.CAR, .CAL, .CAS, .CAP, .CAT).

Click Save in the File menu.
    => The current model will be saved immediately. If your model has only

the preset temporary name, you are prompted for a new name.

Compare also the equivalent, but local Save function of the local menu.

File Menu | Save As
The item Save As in the File menu provides saving the current state of your whole
automaton tool model under a free selectable name (file extension .CAT).

Click Save As in the File menu
    => You are prompted for a new name with the preset file extension .CAT..
Type in a significant name and click OK.
    => The whole automaton tool is saved with its current state.

Compare also the equivalent, but local Save As function of the local menu.

File Menu | Set Font
The item Set Font in the File menu provides choosing an appropriate font for the text
windows of CAT (LIST window, STATE window).

Click Set Font in the File menu
    => You are offered a dialog box to choose an appropiate font.
Click a font name.
    => A sample of the selected font will be shown in the bottom left corner.
Confirm your selection by clicking OK.

Note:
The selected font is only valid for for your current CAT model, not for the whole CAT
environment.

Selecting a smaller font may be a means to have the whole CARP program present on
your STATE window.

All fonts currently installed on your Windows machine are selectable.

Compare also the equivalent, but local Set Font function of the local menu.

File Menu | Print Text
The item Print Text in the File menu provides printing the contents of any CAT text window
(LIST or STATE window).

Select Print Text in the File menu
    => You are offered the print dialog box.
Click OK to confirm printing.
    => The contents of the selected window will be printed on the preset printer.

Note:
To print the actual state of your STATE window (only text format) use the state control
button.

To change the preset printer use the Setup option of the print dialog box.

The complete .CAR or .CAL file will be printed by Print Text.

Compare also the equivalent Print function of the local menu.

File Menu | Exit
The item Exit in the File menu provides leaving the whole CAT environment.

Click Exit in the File menu
    => You will return to the Windows environment.

Another way to leave CAT is to doubleclick the Close button in the upper left corner of
your CAT window.

If any file of your current CAT model is not saved, you are prompted whether you want to
save or discard the corresponding file.

Edit Menu
The Edit menu contains several items for text manipulation, particularly to move text to
and from the Clipboard.

Command Description

Undo Undo last change

Cut Moves selected text into Clipboard
Copy Copies selected text into Clipboard
Paste Inserts text from Clipboard

Delete Deletes selected text without changing the clipboard
Clear Deletes complete text of the current text window

Compare also the equivalent functions of the local menu.

Clipboard

A temporary storage location used to transfer data between applications, different text
windows or on editing a single text (Cut, Paste).

Edit Menu | Undo
The item Undo in the Edit menu makes your last action undone.

Click Undo in the Edit menu
    => The state before you entered your last command will be restored.

CAT can undo the following edit commands:

Inserting a character
Deleting a character
Cutting a marked text portion
Pasting a marked text portion

A shortcut for Edit / Undo is to press CTRL+ z. Only the last action can be undone.

Compare also the equivalent Undo function of the local menu.

Edit Menu | Cut
The item Cut in the Edit deletes marked text portions and keeps them in the Clipboard for
further actions.

Mark a part of the text by means of the mouse.
    => The corresponding text will be displayed inverse.
Click Cut in the Edit menu
    => The marked text will be deleted and stored temporarily in the Clipboard.

You can then Paste the contents of the clipboard at another position in the document, into
a new document, or into another Windows application.

Shortcut is Crtl + x.

Compare also the equivalent Cut function of the local menu.

Edit Menu | Copy
The item Copy in the Edit menu copies marked text portions temporarily in the Clipboard
without changing the text.

Mark a part of the text by means of the mouse.
    => The corresponding text will be displayed inverse.
Click Copy in the Edit menu
    => The marked text will be stored at the Clipboard. The inverse display of the

text and the text itself remains unchanged.

You can then paste the contents of the clipboard at at another position in the document,
into a new document or into another Windows application.

Shortcut is Crtl + c.

Compare also the equivalent Copy function of the local menu.

Edit Menu | Paste
The item Paste in the Edit menu inserts previously saved text from the Clipboard at
another position in the document, into a new document or into another Windows
application.

Click Paste in the Edit menu
    => Text contained in the Clipboard will be inserted at the current insertion point.

Precondition for using Paste is that you have stored any text in the clipboard. Otherwise,
the Paste menu item is dimmed.

Shortcut is Crtl + v.

Compare also the equivalent Paste function of the local menu.

Edit Menu | Delete
The item Delete in the File menu deletes the marked text or a single character.

Click Delete in the File menu
    => The marked text (if any) or the character to the right of the insertion point will be
deleted.

To undo the deleting use Undo.

Shortcut is Del.

Compare also the equivalent Delete function of the local menu.

Edit Menu | Clear All
The item Clear in the Edit menu removes the complete document without changing the
contents of the clipboard.

Click Clear in the Edit menu
    => You will receive an empty text window.

Be careful with this command: there is no Undo.

Shortcut is Crtl + Del.

Search Menu
The Search menu contains functions to search and exchange text patterns in a text
window.

Command Description

Find Specify a pattern and search for it
Replace Specify one pattern and replace it by another
Next Find next occurence

Search Menu | Find
The item Find in the Search menu searches for a pattern in a text window.

Click Find in the Search menu.
    => A dialog box prompts you for the pattern you want to search for.
Type in a text pattern and click Find Next.
    => In case of success, the text pattern will be highlighted in the text window.

Otherwise, you will get a message box '"pattern" not found'.

You can specify these options:

* Find Type the text you want to find.
* Match Upper/Lower Case Select this box to match the upper and lower case

exactly.
* Match Whole Word OnlySelect this box to find only entire words.
* Forward Search forward in the document starting at the insertion point.
* Backward Search backward in the document starting at the insertion point.

Search Menu | Replace
The item Replace in the Search menu searches for a certain pattern and substitutes it by
a second one.

Click Replace in the Search menu.
    => A dialog box prompts you for the pattern you want to search for and the

substitute pattern.
Type in the two patterns and click Replace.
    => In case of success, the next occurence of the text pattern will be replaced

by the second pattern. In case of no success, you will get a message box
'"pattern" not found'.

You can specify the following options:

* Replace with Type the text you want to insert in place of the found text.
* Find Next Only finds the next occurence of the search pattern.
* Replace All Exchanges all text patterns found without any further dialog.
* Close Closes the Replace dialog box without any action.

* Match case Select this box to match the upper and lower case
exactly.

* Match Whole Word OnlySelect this box to find only entire words..

Search Menu | Next
The item Next in the Search menu searches for the next occurence of the pattern
prreviously entered, without opening the Find dialog box again.

Click Next in the Search menu.
    => In case of success, the next occurence of the text pattern will be highlighted

in the text window. In case of no success, you will get a message box
'"pattern" not found'.

The shortcut is F3.

Window Menu

The Window menu contains functions to organize the CAT windows (RECIPE, STATE, LIST)
according to different modes and purposes..

Command Description

Tile Puts all three windows side by side with equal space for each
Cascade Resizes and layers the three windows
Arrange Icons Arranges window icons displaced on the workspace

Additionally, the Window menu offers by a corresponding menu item to bring up any open
CAT window (RECIPE, STATE, LIST, PALETTE (CAP) or PLANE window (CAS)).

Compare also the Hide Window function of the local menu.

Window Menu | Tile
The item Tile in the Window menu arranges all of the open windows on the
screen so that a portion of each windows can be seen.

Click Tile in the Window menu.
    => The three CAT windows (LIST, RECIPE, STATE) are arranged side by

side so that each window shares the same space on the CAT main window.

The shortcut is Alt w + t.

Window Menu | Cascade
The item Cascade in the Window menu arranges all open windows in a stack one window
overlapping the other. When this is done the title bar of each window is visible so that the
window can be made active by clicking on the title bar

Click Cascade in the Window menu.
    => The three windows will be put on a stack so that some part of each window is
visible.

The shortcut is ALT w + c.

Window Menu | Arrange Icons
The item Arrange Icons in the Window menu places document window icons (if any) along
the bottom of the window in a row left to right.

Click Arrange Icons in the Window menu.
    => CAT windows that have been minimized appear at the bottom of the screen

aligned.

The shortcut is ALT w + i.

Main window
The CAT main window offers several pulldown menues ('File', 'Edit', 'Search', 'Window'),
access to the help system you are now in and a toolbar of buttons to control your CARP
program.

These control buttons are:

Compile Compiles the program
Setup Executes Event Setup

Event 0 Executes Event 0 in single step mode
Event 1 Executes Event 1 in single step mode
Event 2 Executes Event 2 in single step mode
Event 3 Executes Event 3 in single step mode
Event 4 Executes Event 4 in single step mode
Event 5 Executes Event 5 in single step mode

(bottom line of buttons)

Event 0 + arrow Executes Event 0 in run mode
Event 1 + arrow Executes Event 1 in run mode
Event 2 + arrow Executes Event 2 in run mode
Event 3 + arrow Executes Event 3 in run mode
Event 4 + arrow Executes Event 4 in run mode
Event 5 + arrow Executes Event 5 in run mode

Stop Stops execution
Done Executes Event Done

Note:
In a large CAT window, the above buttons will appear aligned.

Text Window
A text window displays and offers in some cases to edit text. Text windows are controlled
by keyboard commands and keyboard input in contrast to graphic windows. Information
on the current state of a text window is shown in the status line. There you find the a
counter referring the current position (column : row) of the text cursor and a label
"Modified", if a previously saved text has changed.

All text windows offer a local menu with these items accessible by clicking the right
mouse button or by holding the shift key pressed while clicking the right mouse key.

Text windows are the LIST and RECIPE window, but also the color palette window (CAP),
the CAT state window (CAS) or any other CAT file window.

Local menu
There are two kinds of local menus offered on any CAT text window (LIST, STATE, PALETTE,
PLANE...):

- local menu invoked by clicking the right mouse button

This file related local menu differs from the File menu in the main window, its actions only
refer to the currently selected text window.

New Creates a new blank text window with NewFile.xxx file name.
Overload Loads a text file into the current text window disregarding file

extensions. Current text file will be overwritten.
Save Saves current text window. If no user defined name is available,

you are prompted for a file name.
Save As Saves current text file under a free selectable name.
Insert Inserts a file at current cursor position without overwriting old

text file.
Set Font Sets font for the current text window. Other text windows keep their

old fonts.
Print Prints current text window on the standard printer.
Hide Window Puts the current text window on the last place of the window stack.

- local menu invoked by clicking the right mouse button plus shift key

The edit related local menu behaves the same like the Edit menu of the main window

Undo Reverts the last editing function like Copy, Cut or Delete.
Cut Deletes a marked text portion and saves it in the clipboard.
Copy Copies a marked text portion and saves it in the clipboard.
Paste Takes a text portion saved it in the clipboard and inserts it

at the current cursor position
Delete Deletes a marked text portion or one key left to the current cursor

position.

On the non-editable LIST window only the Copy item is applicable.

RECIPE window
The RECIPE window contains the CARP program you write to program a particular cellular
automaton model. The 'RECIPE window is a editable text window. Text operations like Cut,
Copy and Paste can be executed as in Windows.

Some more functions are available if you use the local menu.

Window functions are as in Windows except closing. The RECIPE window can only be
covered by other CAT windows or be iconified but not closed.

LIST window
The LIST window is the console window on which your CARP program, the CAT compiler or
the CAT runtime system writes its output. The LIST window is a non-editable text window.

Some more functions are available if you use the local menu.

Window functions are as in Windows except closing. The LIST window can only be covered
by other CAT windows or can be iconified, but not closed.

STATE window
The STATE window is the most important user interface to visualize and control your
current CARP program. In contrast to the text windows LIST and RECIPE it is a graphic
window (click keyword to get informations on its handling).

It comprises

- facilities to control the execution of the CARP program
- status information (time, rounds) about the execution of the CARP program
- facilities to switch between the color or the figure representation of the
cells' state various facilities to customize the display

Event 0 - 5

Executes Event 0 for one time
Executes Event 0 until STOP

Clicking one of the buttons from E0 to E5 performs one execution of the code of the
according event. This mode is advisable for test purposes or to control a certain section of
your CAT model's development very closely.

Clicking one of the circleform buttons below the buttons E0 to E5 performs execution of
the code of the according event in run mode. The corresponding event is only stopped by
clicking the STOP button, by runtime limits of the PD version of CAT or by limits of the
available memory.

Compile button
Clicking this button compiles the current CARP program of the RECIPE window.

If the compiler finds any errors, you are prompted whether you want to continue
compilation or to cancel compilation immediately. Error messages can afterwards be
found in the LIST window.

Compilation is done implicetely if you click any event button including the Setup button.

Setup button
Clicking this button executes the code of the special event SetUp.

CARP instructions contained in this event should make global settings as for example for
the size of the matrix, the maximal evaluated neighborhood (XYBound), the color palette
or the topology.

This event is implicitely executed if you trigger any other event from E0 to E5.

Done button
Sorry!    Not yet implemented.

Stop button
Clicking this button executes the code of the special event Stop.

Any other event currently executed will be stopped then. Be patient, if the actions on the
screen don't stop immediately. The previously activated event has to be completed,
before the Stop event can take effect.

Files of the CAT environment
A couple of files provide different functions inside the CAT environment. They can easily
be identified by their file extension e.g. filename.CAP. The first two letters of the file
extension signify that all these files belong to CAT, the third, however, is related to their
function (In order of importance).

name resolved acronyms function

CAR CAT Recipe file contains your CARP programming instructions for
your cellular automaton model.

CAL CAT List file contains messages written either by WRITE
instructions of your CARP program or by
 the compiler or the runtime system.

CAS CAT Status file contains the last state of your CAT state window
in form of figures representing each cell. If you
want to keep a certain selected state, use the
Save as function to prevent the elected CAS file
from being overwritten.

CAP CAT Palette file contains as decimal or hexadecimal values RGB
tripels with an identifying mapping number that
characterize a certain color. Not needed for normal
use. Related CARP procedure RGBPalette.

CAT CAT environment file contains settings of the whole CAT environment
specific to a certain cellular automaton model.
May be used in conjunction with the Save as
function as snapshot facility for important states
of your model. Resembles structure of a MS
Windows .INI file.

Remark:
All files are printable.

Copyright
License

Limited Warranty on Media and Manual
GMD gives no warranty, explicit or implied, with respect to this software, its quality,
performance or suitability for a particular purpose. This software and manual are supplied
"as is", and you, the user, are assuming the entire risk as to its quality and performance.

In no way will GMD be liable for direct, indirect, special, incidental, or consequential
damages resulting from any defect in the software or its documentation. In particular,
GMD shall have no liability for any damage to programs or data used with this product,
including the cost of recovering or repairing such programs or data.

The warranty and remedies set forth above are exclusive and in lieu of all others, oral or
written, expressed or implied.

The CAT software and the CAT User Manual are subject to copyright (c) GMD 1991-1993.

Hardware and software requirements
CAT can be run on any 100 % compatible PC with an 386- or 486 CPU with MS Windows
3.1, MS Windows / NT and OS/2 2.1 in the windows box.

4 Megabytes RAM are the absolute minimum required, 8, better 12 or 16 Megabytes
advisable. High CPU speed (> 25 MHz) and an accelerated (S)VGA card are a good means
to speed up CAT's graphic output.

Restrictions of the Public Domain version
There are restrictions if you run the public domain version of CAT: Clicking the Run button
in your CAT environment admits a certain number of executions of the event´s code. After
that, a message will come up "Runtime limit exceeded".
You then have to click the Run button again.

The regular version of CAT, however, doesn't contain this restriction.

Where to get a printed manual

A printed manual with the latest version of CAT is available at

German Nation Center for Computer Science (GMD)

PD service departement, ISAR

P.B. 13 16

D-53731 Sankt Augustin

Germany

for DM 35.-. It contains the last PD version of CAT, a couple of sample programs and a
reference guide on the CARP language.

Goals of CAT
The Cellular Automaton Tool (CAT) is a tool to build and visualize cellular automatons in an
easy-to-use way. CAT is headed to point out two concepts:
- the concept of cellular automatons
- the concept of parallel computing. Then, each cell stands for a CPU of a parallel
computer that takes a part of a common task.

CAT can be used to illustrate the concepts of cellular automatons and parallel computing
at introductory courses on one of these items or for self-instruction. When doing self-
instruction, it is advisable to consult the printed CAT manual and a tutorial book.

Properties of CAT
The Cellular Automaton Tool (CAT) is a tool

- to make cellular automaton models and
- to learn about the parallel programming paradigm taking each cell as a
CPU.

CAT offers:
- facilities to visualize the state of each cell of a cellular automaton with
options for output on colored cells or figures representing the cell state,
- an easy to learn and pascal-like programming language to program cellular
automatons named CARP.,
- many facilities to customize the appearance of your cellular automaton
model,
- options to control the appearance of your cellular automaton model inter-
actively by a quite intuitive user interface or by CARP instructions,
- an online help system you are in now and
- a printed manual.

CAT runs under MS Windows 3.1, MS Windows / NT and OS/2 2.1 in the windows box.

Local menu | New

Creates a new blank text window.

Click the right mouse button on a text window.
=> A menu pops up.
Click the item New.
=> You will get a new empty text window, any text of the text window will be deleted..

Note:
If you want to undo this action, click the local menu item overload to load the previous
contents of your text window.

Local menu | Overload

Exchanges the contents of the current text window by a selected text file disregarding file extensions.

Click the right mouse button on a text window.
=> A menu pops up.
Select the item Overload.
=> You will get a dialog box to select a file name from.
Doubleclick any file name in the left hand File box and click OK to confirm your selection.
=> The text of the current text window will be substituted by the text of the selected file.

Note:
You may also overload e.g. a .CAP file by a .CAS file or even a non-text file. Keep in mind
that this might damage your CAT environment.

Local menu | Save

Saves the actual state of the current text window.

Click the right mouse button on a text window.
=> A menu pops up.
Select the item Save.
=> The current text window will be saved under the prefixed name.

If there is no name assigned to the current text window, you will be prompted for a name (cp. Save
As).

Local menu | Save As

Saves the actual state of the current text window under a user defined name.

Click the right mouse button on a text window.
=> A menu pops up.
Select the item Save as.
=> You will get a file dialog box.
Type in a meaningful name and click OK.
=> The current color palette will be saved under the chosen name.

If there is no name assigned to the current text window, you will be prompted for a name (cp. Save
As).

Local menu | Insert File

Inserts a file at the current cursor position in the current text window without deleting the old text.

Click the right mouse button on a text window.
=> A menu pops up.
Select the item Insert File.
=> You will get a file dialog box.
Select a name in the left hand File box and click OK.
=> The selected text file will be inserted into your current text file at the current cursor position.

Be careful not to insert non-text files!

Local menu | Set Font

Changes the preset font of the current text window to a user defined font.

Click the right mouse button on a text window.
=> A menu pops up.
Select the item Set Font.
=> You will get a dialog box to select a font name from.
Doubleclick any font name in the left hand Font box.
=> The text in the Sample box changes to reflect the font you select.
Click OK to confirm your selection.
=> The font will be changed for the current text window.

Note:
The selected font is only valid for your current text window, not for the whole CAT
environment.

All fonts currently installed on your Windows computer are selectable.

You may also change the font style and font size.

Local menu | Hide Window

Hides the current text window and makes the last activated window visible.

Click the right mouse button on a text window.
=> A menu pops up.
Select the item Hide Window.
=> The current text window will be hidden by other CAT windows and the last activated CAT
window will be shown.

Concepts of CARP

CARP is an acronym and stands for Cellular Automaton Programming Language. It is the
programming interface by which you can define your cellular automaton models within the CAT
environment.

CARP is a high-level language related to Modula or Pascal with some additional constructs for parallel
programming, e.g. the PARALLEL DO construct.

CARP procedures may define the visible matrix in the STATE window as main user interface of your
cellular automaton model in different ways:
- Via customization procedures, you may define the size of the matrix and the size of the evaluated
neighborhood of each cell. Beyond that, you may change settings for the color representation of each
cell, for color palettes etc.
- Via the procedure Self, you may change the state of all cells simultaneously. You can combine a Self
procedure with an evaluation of the state of the cell´s neighbors (referred to by the construct REF)
within the limits of the general XYBound values. Keep in mind that this evaluation is really done
parallelly. Example:

IF (north_east = 1)
 THEN Self := 0
FI

- Via control structures such as IF..THEN..ELSE..FI or WHILE..DO..OD, you may transform your
algorithm to CARP programs like every ordinary programming language would allow.
- Via WRITE procedures, you may write certain important values of variables to the LIST window or a
file, which may be used for controlling your automaton model.
- Via the SHL/SHR operators, you are able to mask bits and hide there informations about the previous
state of a cell. You may thus take a historical perspective on your cellular automaton model.

The main interface of any cellular automaton model defined by its CARP program is the colored cell
matrix of the STATE window. A certain color of a cell corresponds to a certain cell state, which may be
expressed by integers as well.

That is why CARP knows integers as the only data types and, in a restricted way, bit data types.

The CARP language is case-sensitive. Thus, you have to write the keywords in the same way as they
appear in the syntax descriptions.

CARP Overview

Assumption:
This online description of CARP assumes that you are familiar with the basic concepts of
programming.

CARP is an acronym and stands for Cellular Automaton Programming Language. This modula- or
pascal-like language is the tool by which you can define your cellular automaton models within the
CAT environment.

Usage hints
Concepts of CARP
--
Basic elements of CARP

Program structure (RECIPE)
Events
Declaration of constants and variables
Declaration of references (neighbors)
Self
Control structures
Operators
Predefined procedures
User-definable procedures
Customization procedures
Comments in a CARP program

--
Compiler and runtime messages
Alphabetical index on CARP-related items

Comments in a CARP program

Syntax
(* string *)

Remarks
To keep your program self-explanatory even for later times, use comments in your CARP program.
Use pairs of "(*" and "*)" respectively to indicate start or end of a comment. Comments may comprise
several lines.

Example
REF left[-1,0]; up[0,-1]; right[0,1];
(* x counts negative for referenced cells
on the top of cell Self *)

Program structure (RECIPE)

Syntax
RECIPE
[XYSize and/or XYBound declarations;]
[VAR declarations;]
[CONST declarations;]
[REF declarations;]
[PROC declarations;]
EVENT declarations;
statements;
END.

Remarks
A CARP program has to be started by the keyword "RECIPE" and terminates with the keyword "END."
("END" followed by a point). Between these delimiters you can declare variables, constants, refered
neighbors of a cell, user defined procedures and - as independently executable parts of a CARP
program - events.

Normally, the keyword RECIPE is followed by settings for the size of the cell matrix and evaluated
neighborhood, by definitions of constants (CONST) , variables (VAR) or referenced cells (REF) and, as
essential elements, program parts that are called EVENT. A template for a program may look as
follows:

Example
RECIPE XYSize = 50;
CONST ...;
VAR ...;
REF ...;

EVENT SetUp;
...

EVENT E0;
...

EVENT E1;...
...
END.

EVENT

Syntax
EVENT [E<identifier_number>] | [SetUp];

statements;
[END.]| [EVENT E <n+1>;]

Remarks
An event is the program code that starts with the keyword "EVENT" plus identifier number plus
semicolon and ends with the next keyword "EVENT" or the keyword "END.". The identifier number
must be in the range from 0 to 5. An event is a program unit, which may be triggered by its
corresponding single step or run button or by the SetUp button and whose code can be executed
independently at a time.
Each event should have one dominant function, e.g. initialization or the implementation of a specific
algorithm.

One CARP program may contain up to 6 events with an identifier from "E0" to "E5" and additionally the
special event SetUp.

Example
EVENT E0; (* initialization of cell plane *)
PlFillRandom (Dead,Alive);
ShowPlane;

EVENT E1;
...

Declaration of constants and variables

Before any event declaration, you may declare variables (VAR), constants (CONST), user-defined
procedures (PROC) or referenced cells (REF) in the head part of your CARP program.

Self

Syntax
Self (read / write)

Remarks
The only instruction to change the state of a cell and thereby the whole cell matrix is Self. All other cell
matrix-related procedures only allow reading of a cell state.

Self is strongly connected with the PARALLEL DO instruction. Inside a PARALLEL DO cycle, Self
allows for each cell read (e.g. Self [Operator] [Operand]) or write access (Self := expression).

All instructions inside a PARALLEL DO and related to Self and other referred cells have to be thought
of as actually happening simultaneously. (In fact, on a single CPU computer, a copy of the state of all
cells will be made, and, depending on these values, the instructions for all cells will be of course
carried out subsequently.) But focussing on CAT's concept, Self and PARALLEL DO are the decisive
keys to leave array treatment and such things behind and turn to the new programming paradigm 'the
cell in its environment'.

The effect of the sample instructions below (it implements Conveys Life program): For each cell of the
cell matrix will be controlled as to whether Self is 'alive' (read access) and has two or three 'alive'
neighbors ('alive' is assigned to the state 1 of a cell). If this is true, Self will be set to 'alive' (write
access with the := procedure). Otherwise, if Self is 'dead' and has three 'alive' neighbors ('resurrection'
rule), Self will be set again to alive. In all other cases, Self will be considered as too lonely or
overcrowded and therefore set to 'dead'.

Example
PARALLEL DO

IF (Self = Alive) AND
 ((MooreSum = 3) OR (MooreSum = 2))
THEN Self := Alive
ELSE IF (Self = Dead) AND (MooreSum = 3)

THEN Self := Alive
ELSE Self := Dead

 FI
FI;
ShowPlane

OD;

Control structures

Control structures provide to execute certain program parts repeatedly or depending on Boolean
expressions.

CAT provides these control structures:

IF .. THEN .. ELSE .. FI
WHILE ..DO OD
REPEAT .. UNTIL
PARALLEL DO
FOR .. TO .. BY .. DO .. OD

Brake

Comparative operators

CAT provides the usual comparative operators known from e.g. Pascal.

Operator Operand types Result type

= equal to variables, constants Boolean
<> unequal variables, constants Boolean
< less than variables, constants Boolean
> greater than variables, constants Boolean
<= less than or variables, constants Boolean

equal to
>= greater than variables, constants Boolean

or equal to

Operators

Operators connect different operands and build expressions or compound instructions. CAT has four
kinds of operators:

Arithmetic operators
Logic operators
Comparative operators
Bit operators

Any8Sum

Syntax
Any8Sum (op1, op2, op3, op4, op5, op6, op7, op8)

Remarks
Returns the sum of eight operands. As operands are allowed constants, variables, referenced cells,
Self or procedures returning integer. All 8 parameters must be present. The same parameter may
occur repeatedly.

Example
EVENT E0;
a := Any8Sum (neigh_l, neigh_r, neigh_t, neigh_b, neigh_tl, neigh_tr,
neigh_bl, neigh_br);

Customization procedures

Topology customization
There are five different topologies, by which you can direct how cells situated on the edges of the
matrix behave. The default topology is RingForm. Note the interference of topology procedures with
the XYBound setting.

Sheetform
BarrelForm
PipeForm
RingForm
PillowForm

Matrix customization
Matrix customization procedures allow to define which part of the matrix is to be shown and provides
different kinds of initialization.

PlClipActive
PlClipAll
PlClipXY
PlFillUni
PlFillUpstairs
PlFillRandom

Color customization
Color customization procedures provide different kinds of defining whole color palettes or single colors
for identifying a certain kind of cells.

DelBrushes
RGBBrush
RGBPalette

Compiler and runtime messages

During the compilation or execution of your CARP program, errors found or extraordinary events
happening during program execution are reported to the LIST window. Two kinds of messages may
occur:

Compiler error Messages
Runtime messages

Alphabetical index on CARP-related items

* PlClipActive
+ PlClipAll
- PlClipXY
:= PlFillRandom
% PlFillUni
AND PlFillUpStairs
Any8Sum Predefined procedures
Arithmetic operators PROC
Assignment procedure Random
BarrelForm Randomize
Beep RECIPE
BEGIN ... END REF
Bit operators RePaint
Brake REPEAT .. UNTIL
Comments RGBBrush
Comparative operators RGBPalette
Concepts of CARP RingForm
Colors Self
CONST SetLattice
Control structures Sheetform
Declaration SHL
DelBrushes ShowCell
DIV ShowKind
Event ShowPlane
Expression SHR
FOR...TO..BY...DO...OD Statement
GetX Usage hints
GetY User-defined procedures
Identifiers VAR
IF..THEN..ELSE..FI WHILE..DO..OD
INV WinClipActive
Logic operators WinClipXY
MOD WinClipAll
MooreSum WrDCaps
NeumannSum WRITE
NOT WrMCaps
OddCell WrPPars
Operators XOR
OR XYBound
PARALLEL DO XYSize
ParallelMethod Zet
PillowForm
PipeForm

Usage hints

Assumption:
This description assumes that you are familiar with the basic concepts of programming.

CARP is an acronym and stands for Cellular Automaton Programming Language. This modula- or
pascal-like language is the tool by which you can define your cellular automaton models within the
CAT environment.

A good way to learn about this language could be to make a CARP program available on the screen or
as a printed sheet, to distinguish between known and unknown matters and to have a look on those
keywords you want to get more information for.

If you want to get a more structured view on CARP, use at least the keywords RECIPE, Events, Self,
REF, VAR, CONST, Control structures and Predefined procedures. Whenever necessary, jump to
those keywords that look somehow mysterious to you.

More advanced things are dealt with in Customization procedures and User-definable procedures.

If you want to learn about a specific CARP instruction, use the alphabetical index to jump to the
corresponding explanation.

Other items of possible interest:
Declarations Identifiers
Logic Operators Arithmetic Operators
Error Messages
Alphabetical index on CARP instructions

IF .. THEN .. ELSE .. FI

Syntax
IF expression THEN statement [ELSE statement] FI;

Remarks
IF, THEN and ELSE specify the conditions under which a statement will be
executed.

If the Boolean expression after IF is true, the statement after THEN is executed.

Otherwise, if the ELSE part is present, the statement after ELSE is executed.

Example

x := Random (1000);
IF (x > 995)

THEN Self := Alive;
ELSE Self := Dead;

FI;

Logic Operators

CAT provides the usual Boolean operators for programming. AND, OR and XOR are operators with
two operands, NOT, however, has only one operand. NOT binds its operand stronger than AND, OR
and XOR, if operands of these two types are used side by side in one expression.

Operator Operation Operand types Result type

NOT negation Boolean Boolean
AND logical and Boolean Boolean
OR logical or Boolean Boolean
XOR logical xor Boolean Boolean

Operand NOT

Syntax
NOT (operand)

Remarks
The NOT operator negates the result of the Boolean expression or operand that follows.

If the cells of your CAT model may only have the state 0 or 1, you may also use a cell denoter as
operand for NOT.

Example
IF NOT (a > limit)
 THEN a := Self
FI;

Operand AND

Syntax
(operand) AND (operand)

Remarks
The AND operator connects two operands and returns true, if both operands are true. All other cases
return false.

If the cells of your CAT model may only have the state 0 or 1, you may treat cells with the AND
operator, too.

Example
a := 8;
IF (a > limit) AND (b = 9)
 THEN a := Self
FI;

Operand OR

Syntax
(operand) OR (operand)

Remarks
The OR operator connects two operands and returns true, if one or both operands are true. The
remaining case returns false.

If the cells of your CAT model may only have the state 0 or 1, you may treat cells with the OR operator,
too.

Example
IF (a > limit) OR (Self = 9)
 THEN a := Self
FI;

Operand XOR

Syntax
(operand) XOR (operand)

Remarks
The XOR operator adds two operands and returns true if one of the two operands returns true and the
other false. If both the operands return true or false, the whole expression returns false. As operands
are allowed: integer constants, variables, referenced cells or procedures that return an integer.

Example
b := 8;
IF (a > limit) XOR (b = 8)
 THEN a := Self
FI;

Operand +

Syntax
(operand) + (operand)

Remarks
The + operator adds two operands. As operands are allowed: integer constants, variables or
procedures that return an integer.

Example
VAR temp;
CONST c = 2345;

EVENT 1;
temp:= c + 37;

Operand -

Syntax
(operand) - (operand)

Remarks
The - operator subtracts two operands. As operands are allowed: integer constants, variables or
procedures that return an integer.

Example
VAR a, b;

EVENT 1;
b:= 17;
a := b - 4;

Operator %

Syntax
% (operand)

Remarks
The % operator precedes a sequence of ones (1) and zeroes (0) that are interpreted as a bit
sequence. Therefore, the operand may only consist of a sequence of 1s and 0s.

By this, you can do bit manipulation in a more explicit form compared to treating integers as bit values
implicidly.

Example
RECIPE XYSize = 60;
 Zet = 4;
 Colors = 4;

CONST dead = %00; (* bit sequence 00 *)
 just_died = %01; (* bit sequence 01 *)
 just_born = %10; (* bit sequence 10 *)
 alive = %11; (* bit sequence 11 *)
 (* A *)
 (* | *)
 (* "alive bit" *)

REF east [1,0];
 west [-1,0];
 north [0,-1];
 south [0,1];
 north_ea [1,-1];
 north_we [-1,-1];
 south_ea [1,1];
 south_we [-1,1];

PROC add_second_bit:;(* procedure evaluates second bit of*)
 (* neighbors that indicates 'alive' *)
 (* state and returns sum of found bits*)
BEGIN
RETURN ((east XOR %01) SHR 1) + ((west XOR %01) SHR 1)
 + ((north XOR %01) SHR 1)+ ((south XOR %01) SHR 1)
 + ((north_ea XOR %01) SHR 1) + ((north_we XOR %01) SHR 1)
 + ((south_ea XOR %01) SHR 1) + ((south_we XOR %01) SHR 1)
END add_second_bit;

Operator *

Syntax
(operand) * (operand)

Remarks
The * operator multiplies two operands. As operands are allowed: integer constants, variables or
procedures that return an integer.

Example
VAR a, b;

EVENT 1;
b:= 17;
a := b * 4;

Operator MOD

Syntax
(operand) MOD (operand)

Remarks
The MOD operator devides two operands and returns the remainder as the result. As operands are
allowed: integer constants, variables or procedures that return an integer.

Example
VAR a, b;

EVENT 1;
b:= 17;
a := b MOD 4;

Operator DIV

Syntax
(operand) DIV (operand)

Remarks
The DIV operator devides two operands and returns an integer as result of the whole expression. As
operands are allowed: integer constants, variables or procedures that return an integer.

Example
VAR a, b;

EVENT 1;
b:= 17;
a := b DIV 4;

Operator SHR

Syntax
(operand) SHR (operand)

Remarks
The SHR operator shifts all bits of a binary digit by the value of the second operand times to the right.
Leading digits are filled by 0.

This works for integer variables, constants or referenced cells interpreted as binary values as well as
for explicedly defined binary digits. In the following sample b returns the value 3 both times.
a := %110; (* 6 *)
b := a SHR 1;
WRITE ('',b);

OR
a := 6;
b := a SHR 1;
WRITE ('',b);

Example
(* life model (cp. Convey) with four different states: *)
(* life, just_born, dead, just_died *)

RECIPE XYBound = 60;

CONST dead = %00; (* bit sample 0000 *)
 just_died = %01; (* bit sample 0001 *)
 just_born = %10; (* bit sample 0010 *)
 alive = %11; (* bit sample 0011 *)
 (* A *)
 (* | *)
 (* "alive bit" *)

REF right_n [1,0];
 left_n [-1,0];
 top_n [0,-1];
 bot_n [0,1];

PROC add_second_bit:;
(* procedure evaluates second bit of neighbors that *)
(* indicate alive state and returns sum of found bits*)

BEGIN *)
RETURN ((right_n XOR %01) SHR 1) + ((left_n XOR %01) SHR 1) + ((top_n XOR
%01) SHR 1) + ((bot_n XOR %01) SHR 1)
END add_second_bit;

EVENT E0;
 RGBBrush (dead, 0, 0, 0); (* black *)
 RGBBrush (just_died, 152, 88, 46); (* brown *)
 RGBBrush (just_born, 74, 229, 3); (* light green *)
 RGBBrush (alive, 50, 174, 30); (* dark green *)

EVENT E1;
PARALLEL DO
a := add_second_bit;

IF (a = 2) OR (a = 3)
 THEN IF (a = 3) AND ((Self = dead) OR (Self = just_died))
 THEN Self := just_born;
 ELSE Self := alive
 FI;
 ELSE IF (Self = alive) OR (Self = just_born)
 THEN Self := just_died;
 ELSE Self := dead;
 FI;
FI;
OD;
ShowPlane;

END.

Operator SHL

Syntax
(operand) SHL (operand)

Remarks
The SHL operator shifts all bits of a binary digit by the value of the second operand times to the left.
Leading digits are filled by 0.

This works for integer variables, constants or referenced cells interpreted as binary values as well as
for explicedly defined binary digits. In the following sample the variable b returns the value 12 both
times.

Example
a := %110; (* 6 *)
b := a SHL 1;
WRITE ('',b);

OR
a := 6;
b := a SHL 1;
WRITE ('',b);

Operator INV

Syntax
INV (operand)

Remarks
The INV operator has an integer or bit operand and converts all its 0s to 1s and all 1s to 0s. As
operand is allowed: an integer constant, a variable, a procedure that returns an integer or a bit
operand.

Example
VAR a, b;

EVENT E4;
a := %110; (* 6 *)
b := INV a;
WRITE ('', ' a: ', a);
WRITE ('', ' INV a: ', b); (* result : - 7 *)
END.

Arithmetic Operators

CAT provides four operators for the fundamental operations of arithmetic and the modulo operator
MOD. All operations and operators deal with and create integer values.

Operator Operation Operand types Result type

 + Addition integer type integer type

 - Subtraction integer type integer type

 * Multiplication integer type integer type

DIV Integer division integer type integer type

MOD Remainder integer type integer type

Bit operators

CAT provides four operators for the bit handling. Integers are hereby regarded as hexadecimal values
if they are introduced by a % operator. If you want to use these particular operators and instructions,
you should be familiar with the basic rules of assembler programming.

Operator Operation Operand types Result type

SHL shift left integer type integer type (may be interpreted
as bit sample)

SHR shift right integer type integer type (may be interpreted
as bit sample)

INV invert integer type integer type (may be interpreted
as bit sample)

% turn to bit 0 and 1 bit pattern

FOR ... TO ...BY ... DO ... OD

Syntax
FOR assignment TO expression [BY step] DO

statement;
OD loop_variable;

Remarks
The FOR ... OD instruction causes the statement after DO to be executed once for each case the
Boolean expression is TRUE. The Boolean expression is checked after the first execution of statement
sequence. So, statement sequence is executed at least one time.

The loop variable is implicedly defined and may not be defined at the top of your CARP program. The
loop variable may be read inside a loop, but never be written to. After the loop is completed the content
of the loop variable is not defined any more.

If the BY construct is used, you can change the interval by which the loop variable is incremented to
the value which follows BY.

Example

FOR x := 1 TO x < 10 BY 2 DO
 WRITE (x);
 IF (x + 3) = 5
 THEN Brake
 ELSE y := x + 1
 FI;
 OD x;

WHILE ... DO ... OD

Syntax
WHILE expression DO statement OD;

Remarks
A WHILE statement contains an expression, which controls the repeated execution of one or several
statements embraced by the keywords 'DO' and 'OD'. The statement after DO is executed repeatedly
as long as the Boolean
expression is True.

The expression is evaluated before the statement is executed, so if the
expression is false at the beginning, the statement will not executed at all.

Example
WHILE i < 20 DO

Self := NeumannSum DIV 2;
i := i + 1

OD;

REPEAT .. UNTIL

Syntax

REPEAT
 statement;
 [statement;]
UNTIL expression;

Remarks
The statements between REPEAT and UNTIL are executed in sequence until, at the end of the loop
body, the Boolean expression after UNTIL is true.

The sequence is executed at least once. The delimiter of the REPEAT ... UNTIL loop is a semicolon.

Example
x := 1;

REPEAT

IF (x + 3) = 8
THEN WRITE (x);
ELSE x := x + 1

FI;
UNTIL x > 15;

PARALLEL DO

PARALLEL DO
 statement;
 [statement;]
OD;

Remarks
The PARALLEL DO executes the instructions of its body once for all cells of the cell matrix in parallel.

Internally, a copy of the present state of all cells at the beginning of the PARALLEL DO construct is
made, so that all conditional instructions etc. take the value contained in this copy. At the end, the
computed state of all cells is written back and kept for future evaluations.

Mostly, the Self procedure is used inside a PARALLEL DO construct as an important part of a cell-
related algorithm.

Example
EVENT E1;
 PlClipActive;
 PARALLEL DO
 Self := North XOR South XOR East XOR West;
 OD;
 ShowPlane;

BEGIN ... END

Syntax
BEGIN
 statement;
 [statement;]
 ...
 [statement;]
END;

Remarks
Instructions bracketed by the keywords BEGIN and END may be used as an additonal means for
structuring a CARP program. Usage is optional.

Example
(* Compound statement used within an "IF" statement *)
IF First < Last THEN
BEGIN
 Temp := First;
 First := Last;
 Last := Temp;
END;
FI;

CONST

Syntax
CONST
 identifier = expression;
 ...
 identifier = expression;

Remarks
A constant declaration (CONST) defines an identifier, which denotes a constant value within the block
containing the declaration. A constant identifier cannot be included in its own declaration. You can only
assign a value to a constant during the declaration.

Expressions used in constant declarations must be written in such a way that the compiler can
evaluate them at compile time.

A string cannot be assigned to a constant. If possible, use the WRITE procedure with a string
parameter.

Examples

(* Constant Declarations *)
CONST
 limit = 65000;
 KeyCode = 943762;

VAR
Variable declarations

Syntax

 VAR
 identifier, ... identifier;

Remarks
A variable (VAR) declaration associates an identifier with a location in the memory where values can
be stored.

You may not combine a declaration of a variable with an assignment like you might expect from the
usage of constants. Assign a value to the variable inside an event.

Examples
(* Variable Declarations *)
 VAR
 x , y , z;

x := 3;

User-definable procedures

PROC

Syntax
PROC proc identifier [VAR (identifier, identifier...)] :;
[VAR identifier;]
[CONST identifier;]
BEGIN

statement sequence;
[RETURN expression;]
END proc identifier;

Remarks
A procedure is a program part, which performs a specific action, often based on a set of parameters.
CAT provides both the function procedure that returns a value and the normal prodecure that
exchanges data with the CARP program it is in via variables declared in the procedure head.

The procedure heading specifies the identifier for the procedure and the formal parameters (if any). A
procedure is activated by a procedure call.

The procedure heading is followed by:
- a declaration part that declares local objects
- the statements between BEGIN and END, which specify what is to be executed when the procedure is

called.

A function procedure contains the keyword RETURN followed by an expression as last instruction.

Example
REF knight_t_l [-1,-2];
 knight_b_r [1,2];
 knight_mt_l [-2,-1];
 knight_mb_r [2,1];

(* procedure adds four positions that might be reached by knight moves *)
PROC add_4_positions (VAR ret):;
BEGIN
ret := knight_t_l + knight_b_r + knight_mt_l + knight_mb_r;
END add_4_positions;

PROC add_4_pos:;(* the same more briefly and the
 procedure returning the value itself *)

BEGIN
RETURN knight_t_l + knight_b_r + knight_mt_l + knight_mb_r;
END add_4_pos;

EVENT E3;
PARALLEL DO
 WRITE ('', 'Value : ', add_4_pos);

 OD;
 ShowPlane;

WRITE

Syntax
WRITE ([string] | [(VAR) identifier] | [(CONST) identifier] | [(PROC)
identifier] [:n] ['']);

Remarks
Writes the contents of variables, constants, values of function procedures or strings to the LIST
window and the .CAL file. Different operands have to be devided by a comma, strings must be
included by ' (apostrophe).

Several facilities for formatting the output are provided:
[(var):n] If the contents of the variable or the constanthas less than n

digits, the output is indended accordingly.
' ' Causes at the end or beginning of the parameter list a carriage

return / linefeed (CR/LF) at the end or beginning of the output.

If the buffer to which all data is moved is full, you will get the message "Editor buffer is full" and will be
prompted whether you want to overwrite the contents or stop writing. All written informations may later
be inspected by means of the LIST window.

Example
IF (x > limit)
 THEN WRITE ('','Limit exceeded with value : ');
 WRITE (x : 8, '');
FI;

REF

Syntax
REF identifier [xvalue,yvalue]; (read)

Remarks
The REF declaration assigns a name to specified neighboring cells of the cell Self and allows such to
refer to the value of these identified cells by their name. Precondition: The cell referred to may not
exceed the limits set by XYBound.

To use the value of a certain reference cell you have to do two things:
- Define a referred cell.
- Use the defined neighbors within the program by referring to their names. Compare the sample

program part on the bottom:

Note:
- You may only read from referenced cells, not write to them. This is restricted to the procedure

Self.
- X-values to the right of Self and Y-values on the bottom of Self have a positive value.

Example
REF right_neighbor [1,0];
 left_neighbor [-1,0];
 top_neighbor [0,-1];
 bottom_neighbor [0,1];
...
...

EVENT E1;
 PARALLEL DO
 Self := top_neighbor OR left_neighbor OR Self OR
 right_neighbor OR bottom_neighbor;
 OD;
 ShowPlane;
END.

Expressions

Expressions consist of operators and operands. These are the operands:

constants
A constant declaration (CONST) defines an identifier, which denotes a constant value within the
block containing the declaration. A constant identifier cannot be included in its own declaration.

variables
A variable (VAR) declaration associates an identifier and a type with a location in the memory
where values of that type can be stored.

procedures
A procedure may be either predefined or user-defined. User-defined procedures may be function
procedures or procedures using a side effect.

operators
The different types of operators existing in CAT (arithmetic operators ,logic operators ,
comparative operators,bit operators) allow to join operands.

Subexpressions can be enclosed in parentheses to change the order of precedence.

Statement

A statement is one of the following:

assignment (:=)
BEGIN..END
FOR..TO..BY..DO..OD
PARALLEL...DO
IF..THEN..ELSE FI
PROC(edure)
REPEAT .UNTIL
WHILE..DO OD

Identifiers

Identifiers denote the following:

CONST(ants)
PROC(edures programs)
VAR(iables)

Identifiers can be formed of up to 31 characters.

- The first character of an identifier must be a letter. Upper or lower case letters are allowed at any
place.

- The characters that follow the first one must be letters, digits, or underscores (no spaces).

Like reserved words, identifiers are case-sensitive. Identifier may not coincide with reserved words.

Examples

(* Identifiers *)
VAR Limit;
CONST A_State = 4;
 B_State = 8;

XYSize

Syntax
XYSize = n;

Remarks
Defines the horizontal (x) and vertical (y) size of a cell matrix. If you want to define a different YSize
compared to XSize, you can use the YSize declaration.

Keep in mind that high XYSize values are very CPU time-consuming.

Example
RECIPE XYSize = 120;
 XYBound = 2;

YSize

Syntax
YSize = n;

Remarks
Defines the vertical (y) size of a cell matrix

Keep in mind that high XYSize or YSize values are very CPU time consuming

Example
RECIPE XYSize = 120;
 YSize = 100;

XYBound

Syntax
XYBound = n;

Remarks
Defines the range of the neighborhood of the cell Self (in x and y values) that can be evaluated by any
instruction of your CARP program. Referenced cells (REF) must be inside the range of the XYBound.

XYBound defines moreover the width of the border area of the cell matrix that is shown if the PlClipAll
procedure is used or at an according setting of the magnifier button.

Example
RECIPE XYSize = 140;
 XYBound = 1 ;

REF east [1,0];
 west [-1,0];
 north [0,-1];
 south [0,1];
 north_ea [1,-1];
 north_we [-1,-1];
 south_ea [1,1];
 south_we [-1,1];

PROC add_second_bit:;(* procedure evaluates second bit of*)
 (* neighbors indicating alive state *)
BEGIN (* and returns sum of found bits *)
RETURN ((east XOR %01) SHR 1) + ((west XOR %01) SHR 1) +
 ((north XOR %01) SHR 1)+ ((south XOR %01) SHR 1) +
 ((north_ea XOR %01) SHR 1) +((north_we XOR %01) SHR 1) +
 ((south_ea XOR %01) SHR 1) + ((south_we XOR %01) SHR 1)
END add_second_bit;

Zet

Syntax
Zet = n;

Remarks
Zet is the number of different states that can be adopted by any cell. The Zet value corresponds
normally to the number of available Colors.

Example
RECIPE XYSize = 140;
 XYBound = 3 ;
 Zet = 20;
 Colors = 20;

Colors

Syntax
Colors = n;

Remarks
Colors defines the number of available colors. The color actually assigned to a certain state may be either
interactively set by means of the color customizing button or by means of the RGBBrush procedure
Example

RECIPE XYSize = 140;
 XYBound = 3 ;
 Zet = 20;
 Colors = 20;

ShowCell

Syntax
ShowCell(n);

Remarks
This procedure shows the cell with the x-value n.

This value is computed as n = x + (XSize * (y - 1)). (An example: in a cell matrix with XYSize = 10 the
first cell in the top left corner counts 0 and the last cell in the bottom right corner counts 99.)

This procedure is very CPU-time-consuming and should only be used if the focus is on a single cell.

Example
EVENT E1;
 PARALLEL DO
 IF x > delimiter
 THEN
 Self := (NeumannSum + Self) > 0
 FI;
 OD;
 ShowCell (74);
 ShowCell (75);
 ShowCell (76);

ShowPlane

Syntax
ShowPlane;

Remarks
This function is necessary for showing the whole cell matrix in its current state. Should normally occur
at the end of any event description for control purposes. If your cellular automaton model is very CPU
time-consuming, you can order to display only every tenth or whatever generation of your CAT model.

Never use ShowPlane inside a PARALLEL DO instruction, for this might crash CAT.

Example
EVENT E1;
...
IF i < 50

THEN ShowPlane
ELSE IF i MOD 10 = 0

THEN ShowPlane
FI

FI;
i := i +1;

ShowKind

Syntax
ShowKind (w);

Remarks
Shows the state and color mapping of a single cell.

Useful only if the focus is on these settings of a single cell. Can then be combined with the ShowCell
procedure.

Example
EVENT E1;
 ShowKind (74);
 ShowKind (75);
 ShowKind (76);
 ShowCell (74);
 ShowCell (75);
 ShowCell (76);

RePaint

Syntax
RePaint;

Remarks
Paints the graphic window again, if appearance or colors are garbled. Scarcely useful inside a CARP
program, compare instead the corresponding RePaint button.

Example
- - -

WinClipAll

Syntax
WinClipAll;

Remarks
Shows the whole cell matrix including the border areas. WinClipAll or WinClipActive are only relevant
for the appearance of the STATE window.

The same can be done interactively by means of the magnifier button .

Example
EVENT SetUp;
 RGBPalette(Colors, $0, $FF, $32,0, $B6,0);
 WinClipAll;
 ShowPlane;

WinClipActive

Syntax
WinClipActive;

Remarks
Shows only the active part of the cell matrix without any border areas. WinClipAll or WinClipActive are
only relevant for the appearance of the STATE window.

The same can be achieved interactively by means of the magnifier button .

Example
EVENT SetUp;
 RGBPalette(Colors, $0, $FF, $32,0, $B6,0);
 WinClipActive;
 ShowPlane;

WinClipXY

Syntax
WinClipXY (x, y);

Remarks
Shows a portion of the whole cell matrix counted from its center with the size x and y. Thus, you focus
on an area of special interest.

Example
EVENT E4;
PlFillRandom (1,4);
WinClipXY (5, 5);

PlClipAll

Syntax
PlClipAll;

Remarks
Makes the whole cell matrix including the border areas available for subsequent instructions This
procedure is only useful if you want to initialize the border areas.

Example
EVENT SetUp;
 PlClipAll;
 RGBPalette (2, 20,10, 60,10, 80,10);

PlClipActive

Syntax
PlClipActive;

Remarks
Restricts the effect of the subsequent instructions to the cell matrix without its border areas defined by
an optional XYBound declaration. This setting is the default value.

Example
EVENT SetUp;
 PlClipActive;
 RGBPalette (2, 20,10, 60,10, 80,10);

PlClipXY

Syntax
PlClipXY (x, y);

Remarks
Shows a portion of the whole cell matrix counted from its center with the size x and y. Thus, you can
focus on an area of special interest.

Example
EVENT E4;
 ...
 PlClipXY (10,10);

DelBrushes

Syntax
DelBrushes;

Remarks
Deletes all color palette entries, which may be defined by means of the RGBBrush or the RGBPalette
procedure. Be careful! The color palette has to be redefined after the entries have been deleted by the
DelBrushes procedure.

Deleting of color palette entries may also affect the color display of MS Windows or other Windows
applications.

Example
EVENT SetUp;
DelBrushes; (* all color palette entries

 are now lost *)
RGBPalette (10, 0,20, 0,20, 0,20);

 (* color palette is now redefined *)

RGBBrush

Syntax

RGBBrush (n, r, g, b);

Remarks
Assigns the color mapping n the colors given by the parameters r(ed), g(reen) and b(blue).

This procedure is advisable, if you want to assign certain cell states to specific colors. (sample a)

This procedure may be used also if you want to change the previous overall color settings for a special
color at a given time (sample b).

Example
(sample a)

RECIPE XYSize = 60;
 Zet = 4;
 Colors = 4;

CONST dead = %00; (* bit sample 0000 *)
 just_died = %01; (* bit sample 0001 *)
 just_born = %10; (* bit sample 0010 *)
 alive = %11; (* bit sample 0011 *)

EVENT E0;
 RGBBrush (dead, 0, 0, 0); (* black *)
 RGBBrush (just_died, 152, 88, 46); (* brown *)
 RGBBrush (just_born, 74, 229, 3); (* light green *)
 RGBBrush (alive, 50, 174, 30); (* dark green *)

(sample b)

VAR cell_state = 34;

EVENT E4;
IF generation_counter > 100

THEN RGBBrush (cell_state, 24 ,30, 30)
FI;

Predefined procedures

CAT provides predefined procedures that differ not at least on the level of global or local range.

GLOBAL EFFECT
Evaluation and global settings

ParallelMethod
Topology-related procedures

Sheetform BarrelForm
PillowForm RingForm
PipeForm

Matrix-related procedures
PlClipActive WinClipActive
PlClipAll WinClipAll
PlClipXY SetLattice
PlFillUni
PlFillUpstairs ShowPlane
PlFillRandom

Color-related procedures (global)
DelBrushes
RGBPalette
RePaint

LOCAL EFFECT
Color-related procedures (local)

RGBBrush
Control procedures

ShowKind WrMCaps
ShowCell WrDCaps
Beep WrPPars
WRITE

Cell-related procedures:
MooreSum GetX
NeumannSum GetY
Any8Sum :=
Random Randomize

RGBPalette

Syntax
RGBPalette (n, r0, ri, g0, gi, b0, bi);

Remarks
The procedure RGBPalette allows to define a set of colors and their dissemination on the color palette.
These parameters have to be defined:

n number of colors to define. Generally, this number should comply with
the number of defined states (Zet).

r0 starting point for the red value
ri increment value by which the red value increases. Values above 255 are

corrrected to a maximum value 255.
g0 starting point for the green value
gi increment value by which the green value increases. Values above 255

are corrrected to a maximum value 255.
b0 starting point for the blue value
bi increment value by which the blue value increases. Values above 255 are

corrrected to a maximum value 255.

Some general remarks: each defined color is a set of three values for their portion of red, green and
blue (rgb). Each of this component color has a definition range from 0 to 255 (hexadecimal $0 to $FF).
Red, green and blue each set to 255 result in the color white, red, green and blue each set to 0 result
in the color black. That is the , in which you may select certain colors. You will find more informations
about this topic at Color definition and manipulation or Color palette.

Note:
RGBPalette sets the colors for your automaton tool model in a global way. Besides, you may define a
specific color by means of the RGBBrush procedure.
Colors defined either by RGBPalette or RGBBrush may be varied interactively later on by means of
the color customizing button. To use this button for particular colors is most advisable because it is
very difficult to predict the resulting color only by defining the red, green and blue parameters.
Values for increments (ri, gi, bi) may also be negative. This makes sense together with high starting
values for r0, g0 or b0.
Values may be given as decimal or hexadecimal figures with leading $.

The example program part will generate this color palette:
r-value g-value b-value

color 1 30 40 50
color 2 45 55 65
color 3 60 70 80
color 4 75 85 95
color 5 90 100 110

Example
EVENT SetUp;
RGBPalette (5, 30,15, 40,15, 50,15);

SetLattice

Syntax
SetLattice (thickness, foregroundcolor, backgroundcolor);

Remarks
Returns a lattice pattern from the center of your cell matrix with free spaces of size thickness and with the
corresponding fore- and backgroundcolors.

Example

EVENT SetUp;
PlClipActive;
SetLattice(3,1,19);

GetX

Syntax
GetX;

Remarks
Returns the current x-value of the treated cell inside a PARALLEL DO loop.

Example
EVENT E1;
 PARALLEL DO
 ...
 IF top > 0
 THEN
 WRITE ('','Current x value : ');
 WRITE (GetX);
 FI;
 OD;

GetY

Syntax
GetY;

Remarks
Returns the current y-value of the treated cell inside a PARALLEL DO loop.

Example
EVENT E1;
 PARALLEL DO
 ...
 IF top = 1
 THEN

WRITE (GetY);
 FI;
 OD;
 ShowPlane;

SheetForm

Syntax
SheetForm;

Remarks
The topology SheetForm makes the evaluation of algorithms end on the edges of the cell matrix
without any further continuation on other edges.

m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m

Topology SheetForm (m = normal cell,
no copied cell)

Example
EVENT SetUp;
SheetForm;
PlClipActive;
ShowPlane;

BarrelForm

Syntax
BarrelForm;

Remarks
The topology BarrelForm forms a virtually barrelshaped matrix, i.e. the right and left edges of the cell
matrix are mutually copied to the opposite edge.

c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c

Topology BarrelForm (c = copied cell)

Example
EVENT SetUp;
BarrelForm;
PlClipActive;
ShowPlane;

PipeForm

Syntax
PipeForm;

Remarks
The topology PipeForm forms a virtually pipeshaped matrix (tube), i.e. the top and bottom edges of the
cell matrix are mutually copied to the opposite edges.

c c c c c c c
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
c c c c c c c

Topology PipeForm (c = copied cell)

Example
EVENT SetUp;
PipeForm;
PlClipActive;
ShowPlane;

RingForm

Syntax
RingForm;

Remarks
The topology RingForm forms a virtual endless matrix connecting at first two edges and then the
edges of the build up pipe. This body is also known as thorus.

The RingForm topology is the default setting and may therefore be omitted.

c c c c c c c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c c c c c c c

Topology RingForm (c = copied cell)

Example
EVENT SetUp;
RingForm;
PlClipActive;
ShowPlane;

PillowForm

Syntax
PillowForm;

Remarks
The topology PillowForm assumes an axis in the middle of the matrix. Cells of the edges that have the
same distance to this axis are copied to their counterpart.

c4c3c2c1|c1c2c3c4
c m m m | m m m c
c m m m | m m m c
c m m m | m m m c
c m m m | m m m c
c m m m | m m m c
c4c3c2c1|c1c2c3c4

Topology PillowForm (c = copied cell)

Example
EVENT SetUp;
PillowForm;
PlClipActive;
ShowPlane;

ParallelMethod

Syntax
ParallelMethod;

Remarks
Is now the default method and doesn't need to be particularly defined.

In a future version of CAT, there will also be a method SequentialMethod.

Example
- - -

PlFillUni

Syntax
PlFillUni (n);

Remarks
Gives the whole cell matrix a uniform color, which is defined by the n parameter and its according color
palette entry.

To take effect the parameter must be inside the range of defined colors and states (cp. Zet).

Example
EVENT SetUp;
 PlClipActive;
 PlFillUni (32);
 ShowPlane;

PlFillUpStairs

Syntax
PlFillUpStairs (Lo, Hi, By);

Remarks
The procedure PlFillUpStairs creates a stair-like shape in the cell matrix. Thereby, the parameter Lo
gives the lower colormapping value , Hi the higher colormapping value and By the interval in which the
range between Hi and Lo is filled. Useful for initialization purposes.

To take effect the parameters must be inside the range of defined colors and states (cp. Zet, Colors).

Example
EVENT SetUp;
 PlClipAll;
 PlFillUpStairs (2, 20, 4);
 ShowPlane;

PlFillRandom

Syntax
PlFillRandom (Lo, Hi);

Remarks
The procedure PlFillRandom initializes the cell matrix by random values ranging from parameter Lo to
Hi.

Keep in mind the range of states, which are defined by the Zet declaration. If the range of possible
values produced by PlFillRandom exceeds the number of defined states, the range is restricted to the
Zet value.

To take effect the parameters must be inside the range of defined colors and states (cp. Zet) and the
smaller value must precede the greater one.

Example

EVENT E0;
PlFillRandom (0,10);
ShowPlane;

WrPPars

Syntax
WrPPars;

Remarks
Acronym for 'Write Plane Parameters'. The according values for your actual CAT cell matrix
configuration are written into the LIST Window. Useful for system administration and debugging
purposes.

A possible output in the LIST window may look as follows:

 CAT actual parameters

 X/YSize : 31 31
 X/YBound : 3 3
 X/YTotal : 37 37
 Act/TotSz : 961 1369
 Org/Skip : 114 6

Example

EVENT SetUp;
 RGBPalette(Colors, 127, 2, 127,30, 127,30);
 ShowPlane;
 WrPPars;

WrDCaps

Syntax
WrDCaps;

Remarks
Acronym for 'Write Display Capabilities'. The corresponding values specific to your data display are
written into the LIST window. Useful for system administration and service purposes, especially on
graphic resolution issues.

A possible output in the LIST window:

 Display capabilities

 H/V Resolution : 1024 768
 Pixel/Planes : 8 1
 Colors : 20
 Palette/reserv : 256 20

Example

EVENT SetUp;
 RGBPalette(Colors, 127, 2, 127,30, 127,30);
 ShowPlane;
 WrDCaps;

WrMCaps

Syntax
WrMCaps;

Remarks
Acronym for 'Write Memory Capabilities'. The corresponding values of RAM (Random Access Memory)
usage specific to your hardware and operating system configuration are written into the LIST window.
Useful for system administration and service purposes, especially if you are in doubt about sufficient
memory (RAM).

A possible output in the LIST window may look as follows:

 Memory and resources

 Mem_free KB : 47730
 Mem_block KB : 16320
 Sys_Res % : 62
 GDI_Res % : 62
 Usr_Res % : 83

Example

EVENT SetUp;
 RGBPalette(Colors, 127, 2, 127,30, 127,30);
 ShowPlane;
 WrMCaps;

Brake

Syntax
Brake;

Remarks
Provides leaving a loop before the execution of all instructions is completed. Jumps to the end of a
loop are only possible inside the current loop.

Example
FOR x := 1 TO x < 10 BY 2 DO

WRITE (x);
IF (x + 3) = 5

THEN Brake
ELSE y := x + 1

FI;
OD x;

Beep

Syntax
Beep (n);

Remarks
Returns n beeps.

This procedure is useful if you want to mark a crucial state of your cellular automaton model by an
acoustic signal.

Example
CONST max_value = 5478;
VAR x;

EVENT E0;
...
IF x >= max_value
 THEN Beep (1)
FI;

Randomize

Syntax
Randomize;

Remarks
Creates a new base number for the random number generator.

This procedure is advisable if you want to prevent that each loop (PARALLEL DO, WHILE), that
contains a Random procedure produces the same sequence of random numbers. The Randomize
procedure should be used in the event SetUp or in the event containing the Random procedure.

Randomize should not be used, if you are searching for a program error that is related to random
numbers.

Example
EVENT SetUp;
 RGBPalette(Colors, $0, 10, $32,10, $B6,10,);
 Randomize;

Random

Syntax
Random (n);

Remarks
Returns a random number between 0 and n. Negative n values are not allowed.

Every call of a loop that contains the Random instruction produces the same result for internal
reasons. If you want to avoid this effect, use Randomize additionally.

Example
VAR x;

EVENT E0;
...
x := Random (1000);
IF x > 950
 THEN ...
FI;

Any8Sum

Syntax
Any8Sum (n1, n2, n3, n4, n5, n6, n7, n8);

Remarks

Any8Sum adds the state values of neighbors, variables or constants that follow as 8 parameters.

Example
REF knight_t_l [-1,-2]; (* possible jumps of *)
 knight_t_r [1,-2]; (* knights *)
 knight_b_l [-1,2];
 knight_b_r [1,2];
 knight_mt_l [-2,-1];
 knight_mt_r [2,-1];
 knight_mb_l [-2,1];
 knight_mb_r [2,1];
...

EVENT E1;
PARALLEL DO

Self := Any8Sum
(knight_t_l, knight_t_r, knight_b_l, knight_b_r, knight_mt_l,

knight_mt_r, knight_mb_l, knight_mb_r);
OD;
ShowPlane;

MooreSum

Syntax
MooreSum

Remarks

MooreSum adds the state values of the northern, southern, western, eastern, northeastern,
northwestern, southeastern and southwestern neighbors of Self.

m m m m m
m O O O m
m O S O m
m O O O m
m m m m m

MooreSum (O = evaluated cell)

Example

EVENT E1;
PARALLEL DO

IF (MooreSum <> 4)
 Self := Ill;
FI;

OD;
ShowPlane;

NeumannSum

Syntax
NeumannSum

Remarks
NeumannSum adds the state values of the northern, southern, western and eastern neighbors of Self.

m m m m m
m m O m m
m O S O m
m m O m m
m m m m m

NeumannSum (O = evaluated cell)

Example
EVENT E1;
PARALLEL DO

IF (NeumannSum > 4)
Self := Red;
FI;

OD;
ShowPlane;

OddCell

Syntax
OddCell

Remarks
OddCell provides access only to those cells whose x-value in the matrix is odd. This effects a cell
matrix resembling a chess-board.

The x-value is counted from the first top left cell to the last right bottom cell continuously. That means
for example that for a matrix with XYSize 31 the first cell of the second row is considered even (i.e.
32nd cell).

Example
EVENT E1;
PARALLEL DO

Self := OddCell;
OD;
ShowPlane;

:= (assignment procedure)

Syntax
[VAR] identifier | Self := expression;

Remarks
The assignement procedure := attributes the value of an expression right to the assignment procedure
to any variable or the cell Self standing left to this procedure.

Example

EVENT E1;
PARALLEL DO
 Self := OddCell;
OD;
ShowPlane;

Compiler messages

ERROR 110 : expression cannot begin with this Symbol
ERROR 140 : unknown identifier
ERROR 351 : '=' expected
ERROR 110 : unknow character or symbol
ERROR 140 : no source
ERROR 351 : 'end of program, period expected
ERROR 110 : end of comment ''*)'' without begin ''(*''
ERROR 110 : 'too many ''(*''; comment not closed '
ERROR 110 : 'too many digits in number '
ERROR 110 : 'number too large '
ERROR 110 : 'wrong chars in number '
ERROR 110 : 'too many digits in hex number '
ERROR 110 : 'hex number too large '
ERROR 110 : 'wrong chars in hex number '
ERROR 110 : 'too many digits in binary number '
ERROR 110 : 'binary number too large '
ERROR 110 : 'wrong chars in binary number '
ERROR 110 : 'identifier too long '
ERROR 110 : 'string too long '
ERROR 110 : 'expression expected '
ERROR 110 : 'factor expected '
ERROR 110 : 'cannot access procedure, within expression '
ERROR 110 : 'cannot access this object, within expression '
ERROR 110 : ''')'' expected '
ERROR 110 : an expression cannot begin with this Symbol '
ERROR 110 : 'expression cannot begin with this Symbol '
ERROR 110 : 'cannot evaluate this object '
ERROR 110 : ''')'' expected '
ERROR 110 : 'factor cannot begin with this Symbol '
ERROR 110 : 'assembler program too long '
ERROR 110 : 'number too large '
ERROR 110 : 'too many identifiers '
ERROR 110 : 'X-parameter out of range '
ERROR 110 : 'Y-parameter out of range '
ERROR 110 : 'duplicate identifier '
ERROR 110 : 'unknown identifier *** '
ERROR 110 : 'wrong symbol in Statement '
ERROR 110 : ''';'' expected '
ERROR 110 : 'END expected '
ERROR 110 : 'cannot assign, read only object '
ERROR 110 : ''':='' expected '
ERROR 110 : 'only assignment to ''Self'' is feasible '
ERROR 110 : 'statement expected '
ERROR 110 : 'FOR variable expected '
ERROR 110 : ''':='' expected '
ERROR 110 : 'TO expected '
ERROR 110 : '(FOR) DO expected '
ERROR 110 : '(FOR) OD expected '
ERROR 110 : 'FOR_identifier do not match '
ERROR 110 : 'EVENT identifier expected '
ERROR 110 : 'duplicate EVENT declaration ';

ERROR 110 : ''';'' expected '
ERROR 110 : 'END. of RECIPE expected '
ERROR 110 : 'DO expected '
ERROR 110 : 'OD expected '
ERROR 110 : 'UNTIL expected '
ERROR 110 : 'THEN expected '
ERROR 110 : 'ELSE or FI expected '
ERROR 110 : '''('' expected '
ERROR 110 : ''')'' expected '
ERROR 110 : 'too many actual parameters '
ERROR 110 : ''','' or '')'' expected '
ERROR 110 : ''')'' expected '
ERROR 110 : 'not enough actual parameters '
ERROR 110 : 'nested FORALL !!! '
ERROR 110 : '(FORALL) OD or expression expected '
ERROR 110 : '(FORALL) OD expected '
ERROR 110 : 'identifier expected, after CONST '
ERROR 110 : '''='' expected, after CONST identifier '
ERROR 110 : 'semicolon expected (in declaration) '
ERROR 110 : 'VAR_identifier expected '
ERROR 110 : 'REF_identifier expected '
ERROR 110 : '''['' expected, after REF identifier '
ERROR 110 : ''','' expected ');
ERROR 110 : ''']'' expected, in REF declaration '
ERROR 110 : 'identifier expected, after VAR '
ERROR 110 : ''')'' expected '
ERROR 110 : 'PROC expected '
ERROR 110 : 'maximum depth of block nesting exceeded '
ERROR 110 : 'cannot declare REF''s in procedure '
ERROR 110 : 'identifier expected, after PROC '
ERROR 110 : 'semicolon expected '
ERROR 110 : '''RECIPE'' expected '
ERROR 110 : '''='' expected '
ERROR 110 : ''';'' expected '
ERROR 110 : ''';'' expected '
ERROR 110 : BEGIN, VAR, CONST or PROC expected '
ERROR 110 : 'END (of procedure) expected '
ERROR 110 : PROC_identifier expected '
ERROR 110 : 'procedure END_identifier expected '
ERROR 110 : 'procedure END_identifier do not match '

Error: Expression cannot begin with this Symbol

Error: Unknown identifier

Error: '=' expected

Known bugs

Events not defined in the CARP program are carried out
Workaround: Do not click the according event buttons.

Message "Window too small to display color mapping" comes late.
Workaround: Enlarge STATE window or CAT main window.

Erroneous display of cell matrix on high XYSize and high Zet values
Workaround: reduce the according values.

User defined CAP file doesn't occur in Palette menu
Workaround: Load the according color palette using the local menu.

Prompt for saving changed files before quitting CAT sometimes missing
Workaround: Leave and reenter CAT.

SetLattice procedure doesn't work properly
No workaround

Maximize / minimize button do not work allways properly
Workaround: Leave and reenter CAT.

Dialogbox 'Editor buffer is full' doesn't work
Workaround: Click the Close button of the dialogbox in the upper left
corner. Bring up the LIST window and the local menu by clicking the right
mouse button. Select 'New' to delete all contents of the LIST window.
You are now able to continue work.

Minor trouble shooting items

Garbled color display
CAT buttons seem not to work
Plane state window not printable

Runtime messages

Runtime : Runtime system is currently controlling the execution of
an event - just a control message.

ShareWare : Run limit of an event was exceeded due to the
restrictions of the public domain version of CAT.

Plane too large : Limitations of the program have been exceeded. Reduce
XYSize and / or Zet value.

